Tuesday, January 8, 2008

Types of Relationships


A relationship refers to the correspondence between two variables. When we talk about types of relationships, we can mean that in at least two ways: the nature of the relationship or the pattern of it.
The Nature of a Relationship

While all relationships tell about the correspondence between two variables, there is a special type of relationship that holds that the two variables are not only in correspondence, but that one causes the other. This is the key distinction between a simple correlational relationship and a causal relationship. A correlational relationship simply says that two things perform in a synchronized manner. For instance, we often talk of a correlation between inflation and unemployment. When inflation is high, unemployment also tends to be high. When inflation is low, unemployment also tends to be low. The two variables are correlated. But knowing that two variables are correlated does not tell us whether one causes the other. We know, for instance, that there is a correlation between the number of roads built in Europe and the number of children born in the United States. Does that mean that if we want fewer children in the U.S., we should stop building so many roads in Europe? Or, does it mean that if we don't have enough roads in Europe, we should encourage U.S. citizens to have more babies? Of course not. (At least, I hope not). While there is a relationship between the number of roads built and the number of babies, we don't believe that the relationship is a causal one. This leads to consideration of what is often termed the third variable problem.

In this example, it may be that there is a third variable that is causing both the building of roads and the birthrate, that is causing the correlation we observe. For instance, perhaps the general world economy is responsible for both. When the economy is good more roads are built in Europe and more children are born in the U.S. The key lesson here is that you have to be careful when you interpret correlations. If you observe a correlation between the number of hours students use the computer to study and their grade point averages (with high computer users getting higher grades), you cannot assume that the relationship is causal: that computer use improves grades. In this case, the third variable might be socioeconomic status -- richer students who have greater resources at their disposal tend to both use computers and do better in their grades. It's the resources that drives both use and grades, not computer use that causes the change in the grade point average.

No comments: